L'interaction électrostatique Charge éléctrique : Charge éléctrique : Interaction électrostatique : Interaction électrostatique : Loi de Coulomb (physicien français, 1736 − 1806) : F _{AB} = k × \frac{q_A × q_B}{d^2} × \vec{u}_{AB} Constante k de Coulomb : k = 8,988 × 10³ N·m²·C². \vec{u}_{AB} : vecteur unitaire (\vec{u}_{AB} = 1), colinéaire et de même sens à \vec{AB}. Champ électrostatique : Ci-contre, illustration du champ électrostatique généré par deux changes. L'interaction gravitationnelle Loi de la gravitation (Newton, 1687) : F _{AB} = - G × \frac{m_A × m_B}{d^2} × \vec{u}_{AB}	
Charge électrique : Charge élémentaire (du proton) : Interaction électrostatique : Loi de Coulomb (physicien français, 1736 – 1806) : $\vec{F}_{A/B} = k \times \frac{q_A \times q_B}{d^2} \times \vec{u}_{AB}$ Constante k de Coulomb : $k = 8,988 \times 10^9 \text{ N·m²·C·²·}$. \vec{u}_{AB} : vecteur unitaire ($ \vec{u}_{AB} = 1$), colinéaire et de même sens à \overrightarrow{AB} . Champ électrostatique : Ci-contre, illustration du champ électrostatique généré par deux charges. L'interaction gravitationnelle	
Charge élémentaire (du proton) : Interaction électrostatique : Loi de Coulomb (physicien français, 1736 – 1806) : $\vec{F}_{A/B} = k \times \frac{q_A \times q_B}{d^2} \times \vec{u}_{AB}$ Constante k de Coulomb : $k = 8,988 \times 10^9 \text{ N·m}^2 \cdot \text{C}^2$. $\vec{u}_{AB} : \text{vecteur unitaire (} \vec{u}_{AB} = 1), \text{ colinéaire et de même sens à \overline{AB}.}$ Champ électrostatique : Ci-contre, illustration du champ électrostatique généré par deux charges. L'interaction gravitationnelle	
Charge élémentaire (du proton) : Interaction électrostatique : Loi de Coulomb (physicien français, 1736 – 1806) : $\vec{F}_{A/B} = k \times \frac{q_A \times q_B}{d^2} \times \vec{u}_{AB}$ Constante k de Coulomb : $k = 8,988 \times 10^{\circ} \text{ N·m}^2 \cdot \text{C}^2$. $\vec{u}_{AB} : \text{vecteur unitaire (} \vec{u}_{AB} = 1), \text{ colinéaire et de même sens à \overline{AB}.}$ Champ électrostatique : Formule : **Ci-contre, illustration du champ électrostatique généré par deux charges.** **L'interaction gravitationnelle** Loi de la gravitation (Newton, 1687) :	TP
Interaction électrostatique : Loi de Coulomb (physicien français, 1736 – 1806) : $\overrightarrow{F}_{A/B} = k \times \frac{q_A \times q_B}{d^2} \times \overrightarrow{u}_{AB}$ Constante k de Coulomb : $k = 8,988 \times 10^9 \text{ N·m²·C·².}$ $\overrightarrow{u}_{AB} : \text{vecteur unitaire (} (\overrightarrow{u}_{AB} = 1), \text{ colinéaire et de même sens à } \overrightarrow{AB}.$ Champ électrostatique : Ci-contre, illustration du champ électrostatique généré par deux charges. L'interaction gravitationnelle Loi de la gravitation (Newton, 1687) :	
$\overrightarrow{F}_{A/B} = \mathbf{k} \times \frac{q_{\mathbf{A}} \times q_{\mathbf{B}}}{d^2} \times \overrightarrow{u}_{\mathbf{AB}}$ Constante k de Coulomb : $\mathbf{k} = 8,988 \times 10^9 \text{ N·m}^2 \cdot \text{C}^2$. $\overrightarrow{u}_{\mathbf{AB}} : \text{vecteur unitaire (} \overrightarrow{u}_{\mathbf{AB}} = 1), \text{ colinéaire et de même sens à } \overrightarrow{\mathbf{AB}}.$ Champ électrostatique : $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
$\overrightarrow{F}_{A/B} = \mathbf{k} \times \frac{q_{\mathrm{A}} \times q_{\mathrm{B}}}{d^2} \times \overrightarrow{u}_{\mathrm{AB}}$ Constante k de Coulomb : $\mathbf{k} = 8,988 \times 10^9 \ \text{N} \cdot \text{m}^2 \cdot \text{C}^2$. $\overrightarrow{u}_{\mathrm{AB}} : \text{vecteur unitaire (} \overrightarrow{u}_{\mathrm{AB}} = 1), \text{ colinéaire et de même sens à } \overrightarrow{\mathrm{AB}}.$ Champ électrostatique :	
Constante k de Coulomb : $k = 8,988 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^2$. \vec{u}_{AB} : vecteur unitaire ($ \vec{u}_{AB} = 1$), colinéaire et de même sens à \overrightarrow{AB} . Champ électrostatique : Formule : **Ci-contre, illustration du champ électrostatique généré par deux charges.** L'interaction gravitationnelle Loi de la gravitation (Newton, 1687) :	B (0)
\$\vec{u}_{AB}\$: vecteur unitaire (\vec{u}_{AB} = 1), colinéaire et de même sens à \$\vec{AB}\$. Champ électrostatique : Formule : **Ci-contre, illustration du champ électrostatique généré par deux charges. **L'interaction gravitationnelle Loi de la gravitation (Newton, 1687) :	
Champ électrostatique : Formule : Ci-contre, illustration du champ électrostatique généré par deux charges. L'interaction gravitationnelle Loi de la gravitation (Newton, 1687) :	<u> </u>
Ci-contre, illustration du champ électrostatique généré par deux charges. L'interaction gravitationnelle Loi de la gravitation (Newton, 1687) :	т
Loi de la gravitation (Newton, 1687) :	
d^2	
⚠ d : distance entre les centres des systèmes en interaction. Constante d'attraction gravitationnelle : $G = 6,67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$.	
Champ gravitationnel :	